Swain House Primary School Calculation Policy

The policy has been designed in accordance with the National Curriculum 2014.
It helps to develop the three main aims: fluency, reasoning and problem solving.
It is designed to give pupils consistent and smooth progression of learning when using the four main operations.
The teaching of mathematics (including using formal strategies) should be built upon the aim of ensuring children's understanding. For this reason, key concepts, models, images, examples of practical equipment have all been included to support teachers when planning for the new curriculum. The use of practical equipment should be ingrained into the teaching of maths:

- as equipment for children to use;
- as visual aids for children in the classroom - displays/working wall;
- as part of teacher modelling/demonstration when introducing new concepts/topics;
- Finally, more able children should use equipment to ensure they can explain why/how (fluency and reasoning).

Although the calculation policy is arranged by year group expectations for the National Curriculum 2014, it is vital that children are taught according to the stage they are at. Children need to be secure with certain key concepts which underpin calculation strategies. When introducing a new strategy, ask children to compare it with strategies they may have previously learnt. Children need to be taught to select strategies with consideration. "Should I use decomposition for 1001-999?" How is formal multiplication similar to partitioning?

Addition		
Year One - read, write and interpret mathematical statements involving addition (+) and equals (=) signs. - represent and use number bonds within 20 - add one-digit and two-digit numbers to 20, including zero. - solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems	Year Two solve problems with addition using concrete objects and pictorial representations, including those involving numbers, quantities and measures and applying their increasing knowledge of mental and written methods - recall and use addition facts to 20 fluently, and derive and use related facts up to 100 add numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, two two-digit numbers, adding three one-digit numbers. - show that addition of two numbers can be done in any	Year 3 add and subtract numbers mentally, including: a three digit number and ones, a three-digit number and tens, a three-digit number and hundreds - add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction - estimate the answer to a calculation and use inverse operations to check answers - Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

			- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.		
Year 4 - add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate - estimate and use inverse operations to check answers to a calculation - solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why			- add and subtrac digits, including us addition and subt - add and subtra large numbers - use rounding to determine, in the accuracy - solve addition and contexts, deciding and why.	Year 5 whole numbers with more than 4 ing formal written methods (columnar ction) numbers mentally with increasingly heck answers to calculations and ontext of a problem, levels of subtraction multi-step problems in which operations and methods to use	Year 6 mental calculations, including with mixed s and large numbers ir knowledge of the order of operations to calculations involving the four operations ddition and subtraction multi-step problems in deciding which operations and methods to use
Objective	Year Group	Concrete		Pictorial	Abstract
	EYFS	Use Numicon to identify two numbers and add them tog total. Use rekenreks to make nu numbers together to equal	different her to make the ers and to add two total.	Use images of numicon to represent how two digits add together to equal a total. Use pictures and images of rekenreks to represent numbers and adding two numbers together.	$\begin{aligned} & 2+3= \\ & 3+1= \end{aligned}$

		Use bead strings to represent and complete number bonds for numbers within and up to 10 and 20. Using Base 10 apparatus for TO + TO (beginning to set out in columns and recorded as expanded column addition)	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer. Use a line to represent Tens, dots to represent ones. Add the ones first and then add the tens.	

Add together the ones first, then add the tens and finally add the hundreds.
Use the Base 10 blocks first before moving onto place value counters.

Use place value counters in the correct position of its numerical value when calculatinginvolving thousands, ten thousands and millions.

Use pictorial representation- squares for hundred, lines for tens and dots for ones.
Start with adding the ones, then the tens and finally the hundreds

Use and draw images of place value counters to show representations and calculations of additions

Use and draw images of place value counters when completing additions with decimals.

	3	4	6
+	2	3	3
	5	7	9

Use known number facts to solve the calculation starting with adding the ones, then the tens and finally the hundreds.

Method to remain the same with progression through the increase in value of numbers.

Introduce column method when calculating additions involving decimals and money.

		Use Base 10 to make both numbers using ten sticks and ones. Add the ones and exchange ten ones for one ten and place that ten in the tens column. Count the remaining ones and add the remaining tens together to calculate the final answer.	Use lines to represent tens and dots to represent ones. Add the ones together and exchange ten ones for one ten and draw this in the tens column. Count the remaining ones and write the answer in the ones coloumn. Add the remaining tens and write the answer in the tens column.	$\begin{aligned} & 27+15=42 \\ & 15+27=42 \\ & 42=27+15 \\ & 42=\square+15 \\ & 27+\square=42 \end{aligned}$ Use regrouping strategy to find the missing numbers.

Add the ones and exhange 10 ones for 1 ten and regroup this in the tens column Add the tens and exchange 10 tens for 1 hundred and regroup this in the hundreds column.

Use place value counters when numbers increase into thousands, ten thousands and millions.
Exchange the correct amount of ones, tens, hundreds, thousands, ten thousands and millions using place value knoweldge and regroup them into the correct coloumn.

Use squares to represent hundred, lines for tens and dots for ones. Add the ones and exhange 10 ones for 1 ten and regroup this in the tens column
Add the tens and exchange 10 tens for 1 hundred and regroup this in the hundreds column.

Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding

4	7	6
+2 6 5		
7	4	1
1	1	

Use regrouping strategy by regrouping a ten or hundred in the correct place value column.

Use written column method to regroup tens, hundreds and ten thousands.

Use same column method for adding three numbers.

Year 1

- Read, write and interpret mathematical statements involving subtraction (-) and equals ($=$) signs.
- Represent and use number bonds within 20
- Subtract one-digit and two-digit numbers to 20 , including zero.
- Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems.

Year 4

- Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- Estimate and use inverse operations to check answers to a calculation
- Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why

Year 2

- Solve problems with subtraction using concrete
objects and pictorial representations, including those involving numbers, quantities and measures and applying their increasing knowledge of mental and written methods
- Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100 subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, two two-digit numbers.
- Show that subtraction of two numbers can be done in any order (commutative)
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Year 5

- Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- Add and subtract numbers mentally with increasingly large numbers
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Year 3

- Add and subtract numbers mentally, including: a three digit number and ones, a three-digit number and tens, a three-digit number and hundreds
- Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

Year 6

- Perform mental calculations, including with mixed operations and large numbers
- Use their knowledge of the order of operations to carry out calculations involving the four operations
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Objective

Subtraction without regrouping	Early years	6-2 = Use physical objects to show how objects can be taken away.	$00 \varnothing$ $00 \varnothing$	$6-2=4$
	Key Stage One	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$ Part-Part whole method: Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? 10-6 $=$	Cross out drawn objects to show what has been taken away. Use a pictorial representation of objects to show the part part whole model.	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$ Move to using numbers within the part whole model.

Making 10 strategy

14-9 = Make 14 on the ten frame.
Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9

We draw the tens and ones in our books. We always take away the ones first.

$$
\begin{aligned}
& 13-7=6
\end{aligned}
$$

Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.

This will lead to a clear written column subtraction

Pupils will also be able to work out:

16-8 =

How many do we take off to reach the next 10? How many do we have left to take off?
Pupils can start to do this strategy mentally.

		Find the difference Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches. $23-15=8$ The difference between 23 and 15 is 8 .
Subtraction without regrouping	Key Stage Two	$384-141=243$ Remember to: - Write one number per square. - Write each digit in the correct place value column (H, T, O). - Subtract your ones column first. - Write the answer in the correct place underneath the column. - Repeat subtracting the tens then hundreds		$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.

Subtraction with regrouping	Key Stage One	$10-6=4$ $42-16=26$ Use the base 10 to make the first number. If you do not have enough ones, you need to regroup a ten stick for 10 ones. You can now take away the ones and then take away the tens.	Draw the tens and ones of the first number. If you do not have enough ones, you need to cross out a ten stck and regroup for ten ones. Drawing the ten ones to the right of the ones you already have. You can then cross out the ones you are taking away and then cross out the tens you are taking away.	Children can start their formal written method by partitioning the number into clear place value columns. Children can solve a variety of calculations, such as: $\begin{aligned} & 42-16=26 \\ & 26=42-16 \\ & 42-\square=26 \\ & \square-16=26 \\ & 42-26=16 \end{aligned}$

Year 1

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Year 4

- Recall multiplication and division facts for multiplication tables up to 12×12
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers
- Recognise and use factor pairs and commutativity in mental calculations
- Multiply two-digit and three-digit numbers by a onedigit number using formal written layout
- Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects

Year 2

- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising dd and even numbers.
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Year 5

- Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- Multiply and divide numbers mentally drawing upon known facts
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000
- Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign

Year 3

- Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Year 6

- Multiply multi-digit numbers up to 4 digits by a twodigit whole number using the formal written method of long multiplication
- Perform mental calculations, including with mixed operations and large numbers
- Use their knowledge of the order of operations to carry out calculations involving the four operations

Objective	Year Grou p	Concrete	Pictorial	Abstract

\begin{tabular}{|c|c|c|c|c|}
\hline Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distribute d equally. \& Early years \& \begin{tabular}{l}
Doubling \\
Double 2 is 4
\end{tabular} \& \& \begin{tabular}{l}
Double 2 is 4 \\
Double 4 is 8
\end{tabular} \\
\hline \& Key Stag e One \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8
\[
4 \times 2=8
\] \\
Understand multiplication as repeated addition, using objects, equipment and visual representations.
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\square

Use arrays to record and recognise

multiplication

Record as:

$5 \times 3=3+3+3+3=15$

$3 \times 5=5+5+5=15$
\qquad

 \&

Partition a number and then double each part before recombining it back together.

To know by heart the 2, 3, 5, \& 10 times table facts

Skip counting
\end{tabular}

\hline
\end{tabular}

Show the link with arrays to first introduce the grid method.

\times	10	3	$4 \text { rows }$
4			4 rows
			of 3

Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number.We are multiplying by 4 so we need 4 rows.

Cakatcons
4×126

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Then you have
your answer.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\mathbf{x}	30	5
7	210	35

$$
210+35=245
$$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

10	8
10	100
30	
3	30

It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.

Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.

Start with long
multiplication, reminding the children about lining up their numbers clearly in columns.

If it helps, children can write out what they are solving next to their answer

$$
\begin{aligned}
32 & \\
\times 24 & \\
\cline { 1 - 1 } 8 & (4 \times 2) \\
120 & (4 \times 30) \\
40 & (20 \times 2) \\
600 & (20 \times 30)
\end{aligned}
$$

This moves to the more compact method.

1342

X 18
13420
10736
24156

Division

Year 1

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Year 2

- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Solve problems involving multiplication and division using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

Year 5

- Multiply and divide numbers mentally drawing upon known facts
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000
- Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign

Year 3

- Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Year 6

- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- Perform mental calculations, including with mixed operations and large numbers
- Use their knowledge of the order of operations to carry out calculations involving the four operations

Objective	Year Group	Concrete	Pictorial	Abstract
Explore and represent patterns within numbers up to 10, including	Early years	I apple split into 2 equal parts	Can you share 8 buttons with 4 friends?	Jack has 8 sweets. He wants to share them with his friend. How many sweets will they get each?

evens and odds, double facts and how quantities can be distributed equally.		8 carrots shared equally between 2 friends is 4 each.		
	Key Stage One	I have 10 cubes, can you share them equally in 2 groups? $12 \div 3=$ sharing	Children use pictures or shapes to share quantities. $8 \div 2=4$ $12 \div 3=$ Sharing Use a number line to show jumps in groups. The number of jumps equals the number of groups.	Share 9 buns between three people. $9 \div 3=3$ $28 \div 7=4$ Divide 28 into 7 groups. How many are in each group? Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

(2) | Divide quantities into equal groups. |
| :--- |
| Use cubes, counters, objects or place |
| value counters to aid understanding. |

Key
Stage
Two
(ther

Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups.

Encourage them to move towards counting in multiples to divide more efficiently.

Begin with divisions that divide equally with no remainder.

Move onto divisions with a remainder.

Finally move into decimal places to divide the total accurately.

		$2544 \div 12$ How many groups of 12 thousands do we have? None Exchange 2 thousand for 20 hundreds. $1 2 \longdiv { 2 5 4 4 }$ How many groups of 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. $\begin{gathered} 1 2 \longdiv { 0 2 } \\ \frac{24}{2544} \\ 1 \end{gathered}$ Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14 ? 1 remainder 2 $\text { 12 } \begin{array}{r} 021 \\ \frac{24}{2544} \\ \hline \frac{14}{12} \\ \hline 2 \end{array}$ Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24 ? 2	Instead of using physical counters, students can draw the counters and circle the groups on a whiteboard or in their books. Use this method to explain what is happening and as soon as they have understood what move on to the abstract method as this can be a time consuming process.	$20 \begin{array}{rrrr} 0 & 3 & 1 & 8 \\ \hline 6 & 3 & 6 & 5 \\ -6 & 0 & 1 & 1 \\ \hline 3 & 6 & \\ -\frac{2}{} & 0 & 1 \\ -1 & 6 & 5 \\ 1 & 6 & 0 \\ \hline \end{array}$

